Tutorial: Log Clustering using LogAI
This is an example to show how to use LogAI to conduct log clustering analysis.
Load Data
You can use OpensetDataLoader
to load a sample open log dataset. Here we use HDFS dataset from
LogHub as an example.
import os
from logai.dataloader.openset_data_loader import OpenSetDataLoader, OpenSetDataLoaderConfig
#File Configuration
filepath = "../datasets/HDFS_2000.log"
filepath = os.path.join("..", "datasets", "HDFS_2000.log")
dataset_name = "HDFS"
data_loader = OpenSetDataLoader(
OpenSetDataLoaderConfig(
dataset_name=dataset_name,
filepath=filepath)
)
logrecord = data_loader.load_data()
logrecord.to_dataframe().head(5)
Preprocess
In preprocessing step user can retrieve and replace any regex strings and clean the raw loglines. This can be very useful to improve information extraction of the unstructured part of logs, as well as generate more structured attributes with domain knowledge.
Here in the example, we use the below regex to retrieve Block IDs, IP addresses and filepaths.
from logai.preprocess.preprocessor import PreprocessorConfig, Preprocessor
from logai.utils import constants
loglines = logrecord.body[constants.LOGLINE_NAME]
attributes = logrecord.attributes
preprocessor_config = PreprocessorConfig(
custom_replace_list=[
[r"(?<=blk_)[-\d]+", "<block_id>"],
[r"\d+\.\d+\.\d+\.\d+", "<IP>"],
[r"(/[-\w]+)+", "<file_path>"],
]
)
preprocessor = Preprocessor(preprocessor_config)
clean_logs, custom_patterns = preprocessor.clean_log(
loglines
)
Parsing
After preprocessing, we call auto-parsing algorithms to automatically parse the cleaned logs.
from logai.information_extraction.log_parser import LogParser, LogParserConfig
from logai.algorithms.parsing_algo.drain import DrainParams
# parsing
parsing_algo_params = DrainParams(
sim_th=0.5, depth=5
)
log_parser_config = LogParserConfig(
parsing_algorithm="drain",
parsing_algo_params=parsing_algo_params
)
parser = LogParser(log_parser_config)
parsed_result = parser.parse(clean_logs)
parsed_loglines = parsed_result['parsed_logline']
Information Extraction
Vectorization for unstructured loglines
Here we use word2vec to vectorize unstructured part of the logs. The output will be a list of numeric vectors that representing the semantic features of these log templates.
from logai.information_extraction.log_vectorizer import VectorizerConfig, LogVectorizer
vectorizer_config = VectorizerConfig(
algo_name = "word2vec"
)
vectorizer = LogVectorizer(
vectorizer_config
)
# Train vectorizer
vectorizer.fit(parsed_loglines)
# Transform the loglines into features
log_vectors = vectorizer.transform(parsed_loglines)
Categorical Encoding for log attributes
We also do categorical encoding for log attributes to convert the strings into numerical representations.
from logai.information_extraction.categorical_encoder import CategoricalEncoderConfig, CategoricalEncoder
encoder_config = CategoricalEncoderConfig(name="label_encoder")
encoder = CategoricalEncoder(encoder_config)
attributes_encoded = encoder.fit_transform(attributes)
Feature Extraction
Then we extract and concate the semantic features for both the unstructured and structured part of logs.
from logai.information_extraction.feature_extractor import FeatureExtractorConfig, FeatureExtractor
timestamps = logrecord.timestamp['timestamp']
config = FeatureExtractorConfig(
max_feature_len=100
)
feature_extractor = FeatureExtractor(config)
_, feature_vector = feature_extractor.convert_to_feature_vector(log_vectors, attributes_encoded, timestamps)
Clustering
Here we use K-Means clustering algorithm as an example. We set the number of clusters to 7 in K-Means algorithm parameter configuration.
from logai.algorithms.clustering_algo.kmeans import KMeansParams
from logai.analysis.clustering import ClusteringConfig, Clustering
clustering_config = ClusteringConfig(
algo_name='kmeans',
algo_params=KMeansParams(
n_clusters=7
)
)
log_clustering = Clustering(clustering_config)
log_clustering.fit(feature_vector)
cluster_id = log_clustering.predict(feature_vector).astype(str).rename('cluster_id')
Then you can check the clustering results
# Check clustering results.
logrecord.to_dataframe().join(cluster_id).head(5)
To run this example, you can check the jupyter notebook example on Github.