.. role:: file (code) :language: shell :class: highlight .. image:: _static/logai_logo.jpg :width: 650 :align: center Tutorial: Log Clustering using LogAI ======================================================= This is an example to show how to use LogAI to conduct log clustering analysis. Load Data ------------------------------------------------------- You can use :file:`OpensetDataLoader` to load a sample open log dataset. Here we use HDFS dataset from `LogHub <https://zenodo.org/record/3227177#.Y1M3LezML0o>`_ as an example. .. code-block:: python import os from logai.dataloader.openset_data_loader import OpenSetDataLoader, OpenSetDataLoaderConfig #File Configuration filepath = "../datasets/HDFS_2000.log" filepath = os.path.join("..", "datasets", "HDFS_2000.log") dataset_name = "HDFS" data_loader = OpenSetDataLoader( OpenSetDataLoaderConfig( dataset_name=dataset_name, filepath=filepath) ) logrecord = data_loader.load_data() logrecord.to_dataframe().head(5) Preprocess ------------------------------------------------------------------------------ In preprocessing step user can retrieve and replace any regex strings and clean the raw loglines. This can be very useful to improve information extraction of the unstructured part of logs, as well as generate more structured attributes with domain knowledge. Here in the example, we use the below regex to retrieve Block IDs, IP addresses and filepaths. .. code-block:: python from logai.preprocess.preprocessor import PreprocessorConfig, Preprocessor from logai.utils import constants loglines = logrecord.body[constants.LOGLINE_NAME] attributes = logrecord.attributes preprocessor_config = PreprocessorConfig( custom_replace_list=[ [r"(?<=blk_)[-\d]+", "<block_id>"], [r"\d+\.\d+\.\d+\.\d+", "<IP>"], [r"(/[-\w]+)+", "<file_path>"], ] ) preprocessor = Preprocessor(preprocessor_config) clean_logs, custom_patterns = preprocessor.clean_log( loglines ) Parsing ------------------------------------------------------------------------------ After preprocessing, we call auto-parsing algorithms to automatically parse the cleaned logs. .. code-block:: python from logai.information_extraction.log_parser import LogParser, LogParserConfig from logai.algorithms.parsing_algo.drain import DrainParams # parsing parsing_algo_params = DrainParams( sim_th=0.5, depth=5 ) log_parser_config = LogParserConfig( parsing_algorithm="drain", parsing_algo_params=parsing_algo_params ) parser = LogParser(log_parser_config) parsed_result = parser.parse(clean_logs) parsed_loglines = parsed_result['parsed_logline'] Information Extraction ------------------------------------------------------------------------------------ Vectorization for unstructured loglines ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here we use `word2vec` to vectorize unstructured part of the logs. The output will be a list of numeric vectors that representing the semantic features of these log templates. .. code-block:: python from logai.information_extraction.log_vectorizer import VectorizerConfig, LogVectorizer vectorizer_config = VectorizerConfig( algo_name = "word2vec" ) vectorizer = LogVectorizer( vectorizer_config ) # Train vectorizer vectorizer.fit(parsed_loglines) # Transform the loglines into features log_vectors = vectorizer.transform(parsed_loglines) Categorical Encoding for log attributes ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We also do categorical encoding for log attributes to convert the strings into numerical representations. .. code-block:: python from logai.information_extraction.categorical_encoder import CategoricalEncoderConfig, CategoricalEncoder encoder_config = CategoricalEncoderConfig(name="label_encoder") encoder = CategoricalEncoder(encoder_config) attributes_encoded = encoder.fit_transform(attributes) Feature Extraction ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Then we extract and concate the semantic features for both the unstructured and structured part of logs. .. code-block:: python from logai.information_extraction.feature_extractor import FeatureExtractorConfig, FeatureExtractor timestamps = logrecord.timestamp['timestamp'] config = FeatureExtractorConfig( max_feature_len=100 ) feature_extractor = FeatureExtractor(config) _, feature_vector = feature_extractor.convert_to_feature_vector(log_vectors, attributes_encoded, timestamps) Clustering ---------------------------------------------------------------------------------------- Here we use K-Means clustering algorithm as an example. We set the number of clusters to 7 in K-Means algorithm parameter configuration. .. code-block:: python from logai.algorithms.clustering_algo.kmeans import KMeansParams from logai.analysis.clustering import ClusteringConfig, Clustering clustering_config = ClusteringConfig( algo_name='kmeans', algo_params=KMeansParams( n_clusters=7 ) ) log_clustering = Clustering(clustering_config) log_clustering.fit(feature_vector) cluster_id = log_clustering.predict(feature_vector).astype(str).rename('cluster_id') Then you can check the clustering results .. code-block:: python # Check clustering results. logrecord.to_dataframe().join(cluster_id).head(5) To run this example, you can check the `jupyter notebook <https://github.com/salesforce/logai/blob/main/examples/jupyter_notebook/tutorial_log_clustering.ipynb>`_ example on Github.