logai.algorithms.nn_model.logbert package

Submodules

logai.algorithms.nn_model.logbert.configs module

class logai.algorithms.nn_model.logbert.configs.LogBERTConfig(pretrain_from_scratch: bool = True, model_name: str = 'bert-base-cased', model_dirname: str | None = None, mlm_probability: float = 0.15, mask_ngram: int = 1, max_token_len: int = 384, evaluation_strategy: str = 'steps', num_train_epochs: int = 20, learning_rate: float = 1e-05, logging_steps: int = 10, per_device_train_batch_size: int = 50, per_device_eval_batch_size: int = 256, eval_accumulation_steps: int = 1000, num_eval_shards: int = 10, weight_decay: float = 0.0001, save_steps: int = 50, eval_steps: int = 50, resume_from_checkpoint: bool = True, output_dir: str | None = None, tokenizer_dirpath: str | None = None)

Bases: Config

Config for logBERT model.

Parameters:
  • pretrain_from_scratch – bool = True : whether to do pretraining from scratch or intialize with the HuggingFace pretrained LM.

  • model_name – str = “bert-base-cased” : name of the model using HuggingFace standardized naming.

  • model_dirname – str = None : name of the directory where the model would be saved. Directory of this name would be created inside output_dir, if it does not exist.

  • mlm_probability – float = 0.15 : probability of the tokens to be masked during MLM trainning.

  • mask_ngram – int = 1 : length of ngrams that are masked during inference.

  • max_token_len – int = 384 : maximum token length of the input.

  • learning_rate – float = 1e-5 : learning rate.

  • weight_decay – float = 0.0001 : parameter to use weight decay of the learning rate.

  • per_device_train_batch_size – int = 50 : training batch size per gpu device.

  • per_device_eval_batch_size – int = 256 : evaluation batch size per gpu device.

  • eval_accumulation_steps – int = 1000 : parameter to accumulate the evaluation results over the steps.

  • num_eval_shards – int = 10 : parameter to shard the evaluation data (to avoid any OOM issue).

  • evaluation_strategy – str = “steps” : either steps or epoch, based on whether the unit of the eval_steps parameter is “steps” or “epoch”.

  • num_train_epochs – int = 20 : number of training epochs.

  • logging_steps – int = 10 : number of steps after which the output is logged.

  • save_steps – int = 50 : number of steps after which the model is saved.

  • eval_steps – int = 50 : number of steps after which evaluation is run.

  • resume_from_checkpoint – bool = True : whether to resume from a given model checkpoint. If set to true, it will find the latest checkpoint saved in the dir and use that to load the model.

  • output_dir – str = None : output directory where the model would be saved.

  • tokenizer_dirpath – str = None : path to directory containing the tokenizer.

eval_accumulation_steps: int
eval_steps: int
evaluation_strategy: str
learning_rate: float
logging_steps: int
mask_ngram: int
max_token_len: int
mlm_probability: float
model_dirname: str
model_name: str
num_eval_shards: int
num_train_epochs: int
output_dir: str
per_device_eval_batch_size: int
per_device_train_batch_size: int
pretrain_from_scratch: bool
resume_from_checkpoint: bool
save_steps: int
tokenizer_dirpath: str
weight_decay: float

logai.algorithms.nn_model.logbert.eval_metric_utils module

logai.algorithms.nn_model.logbert.predict module

logai.algorithms.nn_model.logbert.predict_utils module

logai.algorithms.nn_model.logbert.tokenizer_utils module

logai.algorithms.nn_model.logbert.train module

Module contents