logai.algorithms package
Subpackages
- logai.algorithms.anomaly_detection_algo package
- Submodules
- logai.algorithms.anomaly_detection_algo.anomaly_detector_het module
- logai.algorithms.anomaly_detection_algo.dbl module
- logai.algorithms.anomaly_detection_algo.distribution_divergence module
- logai.algorithms.anomaly_detection_algo.ets module
- logai.algorithms.anomaly_detection_algo.forecast_nn module
- logai.algorithms.anomaly_detection_algo.isolation_forest module
- logai.algorithms.anomaly_detection_algo.local_outlier_factor module
- logai.algorithms.anomaly_detection_algo.logbert module
- logai.algorithms.anomaly_detection_algo.one_class_svm module
- Module contents
- logai.algorithms.categorical_encoding_algo package
- logai.algorithms.clustering_algo package
- logai.algorithms.nn_model package
- Subpackages
- logai.algorithms.nn_model.forecast_nn package
- logai.algorithms.nn_model.logbert package
- Submodules
- logai.algorithms.nn_model.logbert.configs module
- logai.algorithms.nn_model.logbert.eval_metric_utils module
- logai.algorithms.nn_model.logbert.predict module
- logai.algorithms.nn_model.logbert.predict_utils module
- logai.algorithms.nn_model.logbert.tokenizer_utils module
- logai.algorithms.nn_model.logbert.train module
- Module contents
- Submodules
- logai.algorithms.nn_model.transformers module
- Module contents
- Subpackages
- logai.algorithms.parsing_algo package
- logai.algorithms.vectorization_algo package
- Submodules
- logai.algorithms.vectorization_algo.fasttext module
- logai.algorithms.vectorization_algo.forecast_nn module
ForecastNN
ForecastNNVectorizedDataset
ForecastNNVectorizerParams
ForecastNNVectorizerParams.embedding_dim
ForecastNNVectorizerParams.feature_type
ForecastNNVectorizerParams.label_type
ForecastNNVectorizerParams.max_token_len
ForecastNNVectorizerParams.min_token_count
ForecastNNVectorizerParams.output_dir
ForecastNNVectorizerParams.semanticvec_config
ForecastNNVectorizerParams.sep_token
ForecastNNVectorizerParams.sequentialvec_config
ForecastNNVectorizerParams.vectorizer_metadata_filepath
ForecastNNVectorizerParams.vectorizer_model_dirpath
- logai.algorithms.vectorization_algo.logbert module
LogBERT
LogBERTVectorizerParams
LogBERTVectorizerParams.custom_tokens
LogBERTVectorizerParams.max_token_len
LogBERTVectorizerParams.max_vocab_size
LogBERTVectorizerParams.model_name
LogBERTVectorizerParams.num_proc
LogBERTVectorizerParams.output_dir
LogBERTVectorizerParams.tokenizer_dirpath
LogBERTVectorizerParams.train_batch_size
LogBERTVectorizerParams.truncation
LogBERTVectorizerParams.use_fast
- logai.algorithms.vectorization_algo.semantic module
- logai.algorithms.vectorization_algo.sequential module
- logai.algorithms.vectorization_algo.tfidf module
TfIdf
TfIdfParams
TfIdfParams.analyzer
TfIdfParams.binary
TfIdfParams.decode_error
TfIdfParams.dtype
TfIdfParams.encoding
TfIdfParams.input
TfIdfParams.lowercase
TfIdfParams.max_df
TfIdfParams.max_features
TfIdfParams.min_df
TfIdfParams.ngram_range
TfIdfParams.norm
TfIdfParams.preprocessor
TfIdfParams.smooth_idf
TfIdfParams.stop_words
TfIdfParams.strip_accents
TfIdfParams.sublinear_tf
TfIdfParams.token_pattern
TfIdfParams.tokenizer
TfIdfParams.use_idf
TfIdfParams.vocabulary
- logai.algorithms.vectorization_algo.word2vec module
- Module contents
Submodules
logai.algorithms.algo_interfaces module
- class logai.algorithms.algo_interfaces.AnomalyDetectionAlgo
Bases:
ABC
Interface for clustering algorithms
- abstract fit(log_features: DataFrame)
- abstract predict(log_features: DataFrame) Series
- class logai.algorithms.algo_interfaces.CategoricalEncodingAlgo
Bases:
ABC
Interface for categorical encoders
- abstract fit_transform(log_attributes: DataFrame) DataFrame
- class logai.algorithms.algo_interfaces.ClusteringAlgo
Bases:
ABC
Interface for clustering algorithms
- abstract fit(log_features: DataFrame)
- abstract predict(log_features: DataFrame)
- class logai.algorithms.algo_interfaces.FeatureExtractionAlgo
Bases:
ABC
Interface for feature extraction algorithms
- abstract extract()
- class logai.algorithms.algo_interfaces.NNAnomalyDetectionAlgo
Bases:
ABC
- abstract fit(train_data, dev_data: LogRecordObject)
- abstract predict(test_data: LogRecordObject)
- class logai.algorithms.algo_interfaces.ParsingAlgo
Bases:
ABC
Interface for parsing algorithms.
- abstract fit(loglines: Series)
fit parsing algorithm with input
- Parameters:
loglines – pd.Series of loglines as input
- Returns:
pd.Dataframe
- abstract parse(loglines: Series) DataFrame
parse loglines :param loglines: pd.Series of loglines to parse :return: pd.Dataframe of parsed results [“loglines”, “parsed_loglines”, “parameter_list”].
- class logai.algorithms.algo_interfaces.VectorizationAlgo
Bases:
ABC
Interface for logline vectorization algorithms
- abstract fit(loglines: Series)
fit vectorizor with input. :param loglines: :return:
- abstract transform(loglines: Series) DataFrame
transform given loglines into vectors. :param loglines: :return:
logai.algorithms.factory module
- class logai.algorithms.factory.AlgorithmFactory
Bases:
object
The singleton factory class for all the supported algorithms.
- get_algorithm(task, name, config)
Gets a algorithm instance given an algorithm name and a config instance.
- Parameters:
task – The task name.
name – The algorithm name.
config – The config instance.
- get_algorithm_class(task, name)
Gets the corresponding algorithm class given an algorithm name.
- Parameters:
task – The task name.
name – The algorithm name.
- get_config(task, name, config_dict)
Gets a configuration instance given an algorithm name and a config dict.
- Parameters:
task – The task name.
name – The algorithm name.
config_dict – The config dictionary.
- get_config_class(task, name)
Gets the corresponding configuration class given an algorithm name.
- Parameters:
task – The task name.
name – The algorithm name.
- instance = <logai.algorithms.factory.AlgorithmFactory object>
- classmethod register(task, name, config_class)
Registers the algorithm name and the configuration class for an algorithm class.
- Parameters:
task – The task name, e.g., detection, clustering
name – The algorithm name(s).
config_class – The configuration class.
- classmethod unregister(task, name)
Unregisters a registered algorithm.
- Parameters:
task – The task name.
name – The algorithm name.