Discrete CI Tests module
causalai.models.common.CI_tests.discrete_ci_tests
- class causalai.models.common.CI_tests.discrete_ci_tests.DiscreteCI_tests(method='pearson')
Performs CI test for discrete variables using the specified method. The null hypothesis for the test is X is independent of Y given Z.
- __init__(method='pearson')
- Parameters:
method (str) --
Options:
"pearson": "Chi-squared test"
"log-likelihood": "G-test or log-likelihood"
"freeman-tukey": "Freeman-Tukey Statistic"
"mod-log-likelihood": "Modified Log-likelihood"
"neyman": "Neyman's statistic"
- run_test(x: ndarray, y: ndarray, z: ndarray | None = None) Tuple[float, float]
compute the test statistics and pvalues
- Parameters:
data_x (ndarray) -- input data for x
data_y (ndarray) -- input data for y
data_z (ndarray) -- input data for z
- Returns:
Returns a tuple of 2 floats-- test statistic and the corresponding pvalue
- Return type:
tuple of floats
- class causalai.models.common.CI_tests.discrete_ci_tests.DiscreteCI_tests(method='pearson')
Bases:
object
Performs CI test for discrete variables using the specified method. The null hypothesis for the test is X is independent of Y given Z.
- run_test(x: ndarray, y: ndarray, z: ndarray | None = None) Tuple[float, float]
compute the test statistics and pvalues
- Parameters:
data_x (ndarray) -- input data for x
data_y (ndarray) -- input data for y
data_z (ndarray) -- input data for z
- Returns:
Returns a tuple of 2 floats-- test statistic and the corresponding pvalue
- Return type:
tuple of floats