TimeSeries Tansform module
causalai.data.transforms.time_series
- class causalai.data.transforms.time_series.DifferenceTransform(order: int = 1)
Transform time series data by taking the difference between two time steps that are a certain interval apart specified by the argument order
- __init__(order: int = 1)
- Parameters:
order (int) -- the interval at which two time steps are chosen for taking a difference
- fit(*data: List[ndarray]) None
dummy function, since difference transform does not have any parameters to store
- Parameters:
data (ndarray) -- Numpy array of shape (observations N, variables D)
- transform(*data: List[ndarray]) List[ndarray] | ndarray
Function that returns the transformed data array list using the transform learned using the fit function
- Parameters:
data (ndarray) -- Numpy array of shape (observations N, variables D)
- Returns:
transformed data
- Return type:
ndarray or list of ndarray
- class causalai.data.transforms.time_series.StandardizeTransform(with_mean: bool = True, with_std: bool = True)
Transform time series data by subtracting mean and dividing by standard deviation
- __init__(with_mean: bool = True, with_std: bool = True)
- Parameters:
with_mean (bool) -- subtract mean from data if True
with_std (bool) -- scale data by its standard deviation if True
- fit(*data: List[ndarray]) None
Function that transforms the data arrays and stores any transformation parameter associated with the transform as a class attribute (i.e., mean, variance). StandardScaler ignores any NaN values along a column when computing column mean and standard deviation.
- Parameters:
data (ndarray) -- Numpy array of shape (observations N, variables D)
- transform(*data: List[ndarray]) List[ndarray] | ndarray
Function that returns the transformed data array list using the transform learned using the fit function
- Parameters:
data (ndarray) -- Numpy array of shape (observations N, variables D)
- Returns:
transformed data
- Return type:
ndarray or list of ndarray