Tabular Tansform module
causalai.data.transforms.tabular
- class causalai.data.transforms.tabular.StandardizeTransform(with_mean: bool = True, with_std: bool = True)
Standardize tabular data by subtracting mean and dividing by standard deviation
- __init__(with_mean: bool = True, with_std: bool = True)
- Parameters:
with_mean (bool) -- subtract mean from data if True
with_std (bool) -- scale data by its standard deviation if True
- fit(*data: List[ndarray]) None
Function that transforms the data arrays and stores any transformation parameter associated with the transform as a class attribute (i.e., mean, variance). StandardScaler ignores any NaN values along a column when computing column mean and standard deviation.
- Parameters:
data (ndarray) -- Numpy array of shape (observations N, variables D)
- transform(*data: List[ndarray]) List[ndarray] | ndarray
Function that returns the transformed data array list using the transform learned using the fit function
- Parameters:
data (ndarray) -- Numpy array of shape (observations N, variables D)
- Returns:
transformed data
- Return type:
ndarray or list of ndarray