omnixai.explanations.timeseries package
Feature importance explanations for time series tasks. |
|
Counterfactual explanations for time series tasks. |
omnixai.explanations.timeseries.feature_importance module
Feature importance explanations for time series tasks.
- class omnixai.explanations.timeseries.feature_importance.FeatureImportance(mode, explanations=None)
Bases:
ExplanationBase
The class for feature importance explanations for time series tasks. It uses a list to store the feature importance explanations of the input instances. Each item in the list is a dict with the following format {“instance”: the input instance, “scores”: feature importance scores}, where both “instance” and “scores” are pandas dataframes.
- Parameters
mode – The task type, e.g., anomaly_detection or forecasting.
explanations – The explanation results for initializing
FeatureImportance
, which is optional.
- add(instance, importance_scores, **kwargs)
Adds the generated explanation corresponding to one instance.
- Parameters
instance – The instance to explain.
importance_scores – The feature importance scores.
- get_explanations(index=None)
Gets the generated explanations.
- Parameters
index – The index of an explanation result stored in
FeatureImportance
. Whenindex
is None, the function returns a list of all the explanations.- Returns
The explanation for one specific instance (a dict) or the explanations for all the instances (a list of dicts). Each dict has the following format: {“instance”: the input instance, “scores”: feature importance scores}, where both “instance” and “scores” are pandas dataframes.
- Return type
Union[Dict, List]
- plot(index=None, figure_type=None, max_num_variables_to_plot=25, **kwargs)
Plots importance scores for time series data.
- Parameters
index – The index of an explanation result stored in
FeatureImportance
, e.g., it will plot the first explanation result whenindex = 0
. Whenindex
is None, it plots all the explanations.figure_type – The figure type, e.g., plotting importance scores in a timeseries or a bar.
max_num_variables_to_plot – The maximum number of variables to plot in the figure.
- Returns
A matplotlib figure plotting feature importance scores.
- plotly_plot(index=0, **kwargs)
Plots feature importance scores for one specific instance using Dash.
- Parameters
index – The index of an explanation result stored in
FeatureImportance
which cannot be None, e.g., it will plot the first explanation result whenindex = 0
.- Returns
A plotly dash figure plotting feature importance scores.
- ipython_plot(index=0, **kwargs)
Plots the feature importance scores in IPython.
- Parameters
index – The index of an explanation result stored in
FeatureImportance
, which cannot be None, e.g., it will plot the first explanation result whenindex = 0
.
- to_json()
Converts the explanation result into JSON format.
- classmethod from_dict(d)
omnixai.explanations.timeseries.counterfactual module
Counterfactual explanations for time series tasks.
- class omnixai.explanations.timeseries.counterfactual.CFExplanation
Bases:
ExplanationBase
The class for counterfactual explanations for time series tasks. It uses a list to store the counterfactual examples of the input instances. Each item in the list is a dict with the following format {“query”: the input instance, “counterfactual”: the generated counterfactual example}. Both “query” and “counterfactual” are pandas dataframes.
- add(query, cfs, **kwargs)
Adds the generated explanation corresponding to one instance.
- Parameters
query – The instance to explain.
cfs – The generated counterfactual examples.
kwargs – Additional information to store.
- get_explanations(index=None)
Gets the generated counterfactual explanations.
- Parameters
index – The index of an explanation result stored in
CFExplanation
. When it is None, it returns a list of all the explanations.- Returns
The explanation for one specific instance (a dict) or all the explanations for all the instances (a list). Each dict has the following format: {“query”: the original input instance, “counterfactual”: the generated counterfactual examples}. Both “query” and “counterfactual” are pandas dataframes.
- Return type
Union[Dict, List]
- plot(index=None, max_num_variables_to_plot=25, **kwargs)
Plots counterfactual examples for time series data.
- Parameters
index – The index of an explanation result stored in
CFExplanation
, e.g., it will plot the first explanation result whenindex = 0
. Whenindex
is None, it plots all the explanations.max_num_variables_to_plot – The maximum number of variables to plot in the figure.
- Returns
A matplotlib figure plotting counterfactual examples.
- plotly_plot(index=0, **kwargs)
Plots counterfactual examples for one specific instance using Dash.
- Parameters
index – The index of an explanation result stored in
CFExplanation
which cannot be None, e.g., it will plot the first explanation result whenindex = 0
.- Returns
A plotly dash figure plotting counterfactual examples.
- ipython_plot(index=0, **kwargs)
Plots counterfactual examples in IPython.
- Parameters
index – The index of an explanation result stored in
CFExplanation
, which cannot be None, e.g., it will plot the first explanation result whenindex = 0
.
- to_json()
Converts the explanation result into JSON format.
- classmethod from_dict(d)