omnixai.explainers.timeseries package
omnixai.explainers.timeseries.auto module
- class omnixai.explainers.timeseries.auto.TimeseriesExplainer(explainers, mode, data, model, preprocess=None, postprocess=None, params=None)
Bases:
AutoExplainerBase
The class derived from AutoExplainerBase for time series tasks, allowing users to choose multiple explainers and generate different explanations at the same time.
explainers = TimeseriesExplainer( explainers=["shap", "mace"], mode="anomaly_detection", data=data, model=model, preprocess=preprocess_function, postprocess=None ) local_explanations = explainers.explain(x)
- Parameters
explainers (
Collection
) – The names or alias of the explainers to use.mode (
str
) – The task type, e.g., anomaly_detection or forecasting.data (
Timeseries
) – The training time series data used to initialize explainers.data
can be the training dataset for training the machine learning model.model (
Any
) – The machine learning model to explain, which can be a scikit-learn model, a tensorflow model, a torch model, or a black=box prediction function.preprocess (
Optional
[Callable
]) – The preprocessing function that converts the raw features into the inputs ofmodel
.postprocess (
Optional
[Callable
]) – The postprocessing function that transforms the outputs ofmodel
to a user-specific form.params (
Optional
[Dict
]) – A dict containing the additional parameters for initializing each explainer, e.g., params[“shap”] = {“param_1”: param_1, …}.
- static list_explainers()
List the supported explainers.