Adding Models
This is a tutorial on adding new models using lavis.models
module.
The LAVIS library includes a standard model module that builds the foundation for many major language-vision models such as ALBEF,
BLIP, ALPRO, and CLIP.
The lavis.models
module is designed such that any new models can be added and integrated into the LAVIS library, with minimal steps to develop training and testing procedures.
In this tutorial, we will replicate the steps to add a GPT-style model specifically for video-grounded dialogue tasks.
Base Model lavis.models.base_model
Note that any new model definition should inherit the base model class BaseModel
:
from omegaconf import OmegaConf
import numpy as np
import torch
import torch.nn as nn
from lavis.common.utils import get_abs_path
class BaseModel(nn.Module):
"""Base class for models."""
def __init__(self):
super().__init__()
def forward_features(self, *args, **kwargs):
"""Similar to *forward* but only return features."""
raise NotImplementedError
def load_from_pretrained(self, url_or_filename):
raise NotImplementedError
@classmethod
def _from_config(cls, cfg=None, model_type="base"):
if not cfg:
# useful when building model without a provided configuration file
cfg = OmegaConf.load(cls.default_config_path(model_type)).model
return cls.from_config(cfg)
@classmethod
def from_pretrained(cls, model_type="base"):
"""
Build a pretrained model from the default configuration file, specified by model_type.
"""
return cls._from_config(cfg=None, model_type=model_type)
@property
def device(self):
return list(self.parameters())[0].device
@classmethod
def default_config_path(cls, model_type="base"):
assert (
model_type in cls.PRETRAINED_MODEL_CONFIG_DICT
), "Unknown model type {}".format(model_type)
return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type])
def before_evaluation(self, **kwargs):
pass
def show_n_params(self, return_str=True):
tot = 0
for p in self.parameters():
w = 1
for x in p.shape:
w *= x
tot += w
if return_str:
if tot >= 1e6:
return "{:.1f}M".format(tot / 1e6)
else:
return "{:.1f}K".format(tot / 1e3)
else:
return tot
In this base model, we already declare and standardize many common methods such as _from_config
and _from_pretrained
.
Inheriting this base model class allows us to standardize operations of models across all model classes while still allowing customizations.
We advise users not to change the implementation of the base model class as this will affect all existing model subclasses.
GPT-style Video-grounded Dialogue Model lavis.models.gpt_models.gpt_dialogue
In this step, we can define a new model class, e.g. under lavis.models.gpt_models.gpt_dialogue
, for GPT-based dialogue models designed specifically for video-grounded dialogues.
Note that we assume the model class inherits from the standard model super class GPT2LMHeadModel
from the transformers
library.
We also enforce model integration to the LAVIS framework through the inheritance of the BaseModel
from the LAVIS library, as the secondary super class.
import torch
from lavis.common.registry import registry
from lavis.models.base_model import BaseModel
from transformers import GPT2Model, GPT2LMHeadModel
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
import math
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss
@registry.register_model("gpt_dialogue")
class GPTDialogue(GPT2LMHeadModel, BaseModel):
...
Next, we can modify the architecture of the model during model initialization to fit the tasks of interest, i.e. video-grounded dialogues. In this case, we want to add additional model parameters for a linear network to transform the video feature representations to the model dimension.
class GPTDialogue(GPT2LMHeadModel, BaseModel):
def __init__(self, config, len_video_ft=4224):
super().__init__(config)
self.video_ff = nn.Linear(len_video_ft, config.n_embd)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
Note that for each new model class, we advise redefining the from_config
method which is inherited from the BaseModel
class.
As each model usually has its own unique configurations, redefining the method will ensure the model instances are created properly.
For instance, GPTDialogue
requires an additional parameter of video feature length (len_video_ft
) which should be part of the model initialization procedure.
Another additional parameter is the number of tokens/words (as we include additional special tokens in the vocabulary for dialogue tasks).
class GPTDialogue(GPT2LMHeadModel, BaseModel):
...
@classmethod
def from_config(cls, cfg):
model = cls.from_pretrained('gpt2', len_video_ft=cfg['len_video_ft'])
model.resize_token_embeddings(cfg['len_tokenizer'])
return model
Other basic methods should also be defined explicitly in the new model class, including the forward
function.
For instance, in GPT models for video-grounded dialogue tasks, we want the forward operation also includes the transformation and integration of video features before passing the representations to the Transformer layers.
class GPTDialogue(GPT2LMHeadModel, BaseModel):
...
def forward(self, samples,
past_key_values=None,
position_ids=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None):
input_embs = self.transformer.wte(samples['input_ids'])
video_embs = self.video_ff(samples['video_fts'])
input_embs = torch.cat([video_embs, input_embs], dim=1)
transformer_outputs = self.transformer(
attention_mask=samples['attn_mask'],
token_type_ids=samples['token_type_ids'],
inputs_embeds=input_embs,
position_ids=position_ids,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
...
Registering New Model lavis.models.__init__
Any new model must be officially registered as part of the lavis.models
module.
For instance, to add a model class for GPT-based dialogue models, we can modify the __init__.py
as follows:
from lavis.models.gpt_models.gpt_dialogue import GPTDialogue
__all__ = [
...
"GPTDialogue"
]
Assigning Model
From the above example of a model class, note that we define a from_config method
for the new model class.
This method will process a configuration file and pass specific parameters to initialize the model classes properly.
To do this, we can assign/ associate the correct registry of model classes in a configuration file.
For instance, the following should be specified in a configuration file e.g. dialogue_avsd_ft.yaml
:
model:
arch: gpt_dialogue # name of the model
model_type: base
Subsequently, any processes (e.g. training) should load this configuration file to assign the correct model.
python train.py --cfg-path dialogue_avsd_ft.yaml
Note that to simplify the model configuration, we only enable two main parameters here: arch
and model_type
. arch
refers to the model class registry, and model_type
is the corresponding model type under this model family.
For instance, with gpt_dialogue
, we have a model base
which has its own configuration in a separate configuration file e.g. gpt_dialogue_base.yaml
:
model:
arch: gpt_dialogue
len_tokenizer: 50264 # 50257 tokens from gpt2 default tokenizer + additional special tokens
len_video_ft: 4224 # i3d_rgb: 2048 i3d_flow: 2048 vggish: 128
We can pass load this configuration and pass the parameters to the above from_config
method to initialize the model accordingly.
We advise the users to maintain a dictionary that contains default paths to model configurations, in the model class definition.
By default, the LAVIS framework will search for configurations from each model class defined as model.PRETRAINED_MODEL_CONFIG_DICT
.
class GPTDialogue(GPT2LMHeadModel, BaseModel):
PRETRAINED_MODEL_CONFIG_DICT = {
"base": "configs/models/gpt_dialogue_base.yaml"
}
...