Adding Models

This is a tutorial on adding new models using lavis.models module.

The LAVIS library includes a standard model module that builds the foundation for many major language-vision models such as ALBEF, BLIP, ALPRO, and CLIP. The lavis.models module is designed such that any new models can be added and integrated into the LAVIS library, with minimal steps to develop training and testing procedures. In this tutorial, we will replicate the steps to add a GPT-style model specifically for video-grounded dialogue tasks.

Base Model lavis.models.base_model

Note that any new model definition should inherit the base model class BaseModel:

from omegaconf import OmegaConf

import numpy as np

import torch
import torch.nn as nn

from lavis.common.utils import get_abs_path

class BaseModel(nn.Module):
    """Base class for models."""

    def __init__(self):
        super().__init__()

    def forward_features(self, *args, **kwargs):
        """Similar to *forward* but only return features."""
        raise NotImplementedError

    def load_from_pretrained(self, url_or_filename):
        raise NotImplementedError

    @classmethod
    def _from_config(cls, cfg=None, model_type="base"):
        if not cfg:
            # useful when building model without a provided configuration file
            cfg = OmegaConf.load(cls.default_config_path(model_type)).model

        return cls.from_config(cfg)

    @classmethod
    def from_pretrained(cls, model_type="base"):
        """
        Build a pretrained model from the default configuration file, specified by model_type.
        """
        return cls._from_config(cfg=None, model_type=model_type)

    @property
    def device(self):
        return list(self.parameters())[0].device

    @classmethod
    def default_config_path(cls, model_type="base"):
        assert (
            model_type in cls.PRETRAINED_MODEL_CONFIG_DICT
        ), "Unknown model type {}".format(model_type)
        return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type])

    def before_evaluation(self, **kwargs):
        pass

    def show_n_params(self, return_str=True):
        tot = 0
        for p in self.parameters():
            w = 1
            for x in p.shape:
                w *= x
            tot += w
        if return_str:
            if tot >= 1e6:
                return "{:.1f}M".format(tot / 1e6)
            else:
                return "{:.1f}K".format(tot / 1e3)
        else:
            return tot

In this base model, we already declare and standardize many common methods such as _from_config and _from_pretrained. Inheriting this base model class allows us to standardize operations of models across all model classes while still allowing customizations. We advise users not to change the implementation of the base model class as this will affect all existing model subclasses.

GPT-style Video-grounded Dialogue Model lavis.models.gpt_models.gpt_dialogue

In this step, we can define a new model class, e.g. under lavis.models.gpt_models.gpt_dialogue, for GPT-based dialogue models designed specifically for video-grounded dialogues. Note that we assume the model class inherits from the standard model super class GPT2LMHeadModel from the transformers library. We also enforce model integration to the LAVIS framework through the inheritance of the BaseModel from the LAVIS library, as the secondary super class.

import torch
from lavis.common.registry import registry
from lavis.models.base_model import BaseModel

from transformers import GPT2Model, GPT2LMHeadModel
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
import math
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss

@registry.register_model("gpt_dialogue")
class GPTDialogue(GPT2LMHeadModel, BaseModel):
    ...

Next, we can modify the architecture of the model during model initialization to fit the tasks of interest, i.e. video-grounded dialogues. In this case, we want to add additional model parameters for a linear network to transform the video feature representations to the model dimension.

class GPTDialogue(GPT2LMHeadModel, BaseModel):

    def __init__(self, config, len_video_ft=4224):

        super().__init__(config)

        self.video_ff = nn.Linear(len_video_ft, config.n_embd)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

        # Initialize weights and apply final processing
        self.post_init()

Note that for each new model class, we advise redefining the from_config method which is inherited from the BaseModel class. As each model usually has its own unique configurations, redefining the method will ensure the model instances are created properly. For instance, GPTDialogue requires an additional parameter of video feature length (len_video_ft) which should be part of the model initialization procedure. Another additional parameter is the number of tokens/words (as we include additional special tokens in the vocabulary for dialogue tasks).

class GPTDialogue(GPT2LMHeadModel, BaseModel):
    ...
    @classmethod
    def from_config(cls, cfg):
        model = cls.from_pretrained('gpt2', len_video_ft=cfg['len_video_ft'])
        model.resize_token_embeddings(cfg['len_tokenizer'])
        return model

Other basic methods should also be defined explicitly in the new model class, including the forward function. For instance, in GPT models for video-grounded dialogue tasks, we want the forward operation also includes the transformation and integration of video features before passing the representations to the Transformer layers.

class GPTDialogue(GPT2LMHeadModel, BaseModel):
    ...

    def forward(self, samples,
                past_key_values=None,
                position_ids=None,
                head_mask=None,
                encoder_hidden_states=None,
                encoder_attention_mask=None,
                use_cache=None,
                output_attentions=None,
                output_hidden_states=None,
                return_dict=None):

            input_embs = self.transformer.wte(samples['input_ids'])
            video_embs = self.video_ff(samples['video_fts'])
            input_embs = torch.cat([video_embs, input_embs], dim=1)

            transformer_outputs = self.transformer(
                attention_mask=samples['attn_mask'],
                token_type_ids=samples['token_type_ids'],
                inputs_embeds=input_embs,
                position_ids=position_ids,
                head_mask=head_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
            hidden_states = transformer_outputs[0]

            lm_logits = self.lm_head(hidden_states)
            ...

Registering New Model lavis.models.__init__

Any new model must be officially registered as part of the lavis.models module. For instance, to add a model class for GPT-based dialogue models, we can modify the __init__.py as follows:

from lavis.models.gpt_models.gpt_dialogue import GPTDialogue

__all__ = [
    ...
    "GPTDialogue"
]

Assigning Model

From the above example of a model class, note that we define a from_config method for the new model class. This method will process a configuration file and pass specific parameters to initialize the model classes properly. To do this, we can assign/ associate the correct registry of model classes in a configuration file. For instance, the following should be specified in a configuration file e.g. dialogue_avsd_ft.yaml:

model:
  arch: gpt_dialogue # name of the model
  model_type: base

Subsequently, any processes (e.g. training) should load this configuration file to assign the correct model.

python train.py --cfg-path dialogue_avsd_ft.yaml

Note that to simplify the model configuration, we only enable two main parameters here: arch and model_type. arch refers to the model class registry, and model_type is the corresponding model type under this model family. For instance, with gpt_dialogue, we have a model base which has its own configuration in a separate configuration file e.g. gpt_dialogue_base.yaml:

model:
  arch: gpt_dialogue
  len_tokenizer: 50264 # 50257 tokens from gpt2 default tokenizer + additional special tokens
  len_video_ft: 4224 # i3d_rgb: 2048 i3d_flow: 2048 vggish: 128

We can pass load this configuration and pass the parameters to the above from_config method to initialize the model accordingly. We advise the users to maintain a dictionary that contains default paths to model configurations, in the model class definition. By default, the LAVIS framework will search for configurations from each model class defined as model.PRETRAINED_MODEL_CONFIG_DICT.

class GPTDialogue(GPT2LMHeadModel, BaseModel):
    PRETRAINED_MODEL_CONFIG_DICT = {
            "base": "configs/models/gpt_dialogue_base.yaml"
        }
    ...