Dataset Zoo
LAVIS inherently supports a wide variety of common language-vision datasets by providing automatic download scripts to help download and organize these datasets; and implements PyTorch datasets for these datasets. To view supported datasets, use the following code:
from lavis.datasets.builders import dataset_zoo
dataset_names = dataset_zoo.get_names()
print(dataset_names)
# ['aok_vqa', 'coco_caption', 'coco_retrieval', 'coco_vqa', 'conceptual_caption_12m',
# 'conceptual_caption_3m', 'didemo_retrieval', 'flickr30k', 'imagenet', 'laion2B_multi',
# 'msrvtt_caption', 'msrvtt_qa', 'msrvtt_retrieval', 'msvd_caption', 'msvd_qa', 'nlvr',
# 'nocaps', 'ok_vqa', 'sbu_caption', 'snli_ve', 'vatex_caption', 'vg_caption', 'vg_vqa']
print(len(dataset_names))
# 23
Auto-Downloading and Loading Datasets
We now take COCO caption dataset as an example to demonstrate how to download and prepare the dataset.
In lavis/datasets/download_scripts/
, we provide tools to download most common public language-vision datasets supported by LAVIS.
The COCO caption dataset uses images from COCO dataset. Therefore, we first download COCO images via:
cd lavis/datasets/download_scripts/ && python download_coco.py
This will automatically download and extract COCO images to the default LAVIS cache location.
The default cache location is ~/.cache/lavis
, defined in lavis/configs/default.yaml
.
After downloading the images, we can use load_dataset()
to obtain the dataset. On the first run, this will automatically download and cache annotation files.
from lavis.datasets.builders import load_dataset
coco_dataset = load_dataset("coco_caption")
print(coco_dataset.keys())
# dict_keys(['train', 'val', 'test'])
print(len(coco_dataset["train"]))
# 566747
print(coco_dataset["train"][0])
# {'image': <PIL.Image.Image image mode=RGB size=640x480>,
# 'text_input': 'A woman wearing a net on her head cutting a cake. ',
# 'image_id': 0}
If you already host a local copy of the dataset, you can pass in the vis_path
argument to change the default location to load images.
coco_dataset = load_dataset("coco_caption", vis_path=YOUR_LOCAL_PATH)
Model Zoo
LAVIS supports a growing list of pre-trained models for different tasks, datatsets and of varying sizes. Let’s get started by viewing the supported models.
from lavis.models import model_zoo
print(model_zoo)
# ==================================================
# Architectures Types
# ==================================================
# albef_classification base, ve
# albef_nlvr base
# albef_pretrain base
# albef_retrieval base, coco, flickr
# albef_vqa base, vqav2
# alpro_qa base, msrvtt, msvd
# alpro_retrieval base, msrvtt, didemo
# blip_caption base, base_coco, large, large_coco
# blip_classification base
# blip_feature_extractor base
# blip_nlvr base
# blip_pretrain base
# blip_retrieval base, coco, flickr
# blip_vqa base, vqav2
# clip ViT-B-32, ViT-B-16, ViT-L-14, ViT-L-14-336, RN50
# show total number of support model variants
len(model_zoo)
# 33
Inference with Pre-trained Models
Now let’s see how to use models in LAVIS to perform inference on example data. We first load a sample image from local.
from PIL import Image
# setup device to use
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load sample image
raw_image = Image.open("docs/_static/merlion.png").convert("RGB")
This example image shows Merlion park (image credit), a landmark in Singapore.
Visual question answering (VQA)
BLIP model is able to answer free-form questions about images in natural language.
To access the VQA model, simply replace the name
and model_type
arguments
passed to load_model_and_preprocess()
.
from lavis.models import load_model_and_preprocess
model, vis_processors, txt_processors = load_model_and_preprocess(name="blip_vqa", model_type="vqav2", is_eval=True, device=device)
# ask a random question.
question = "Which city is this photo taken?"
image = vis_processors["eval"](raw_image).unsqueeze(0).to(device)
question = txt_processors["eval"](question)
model.predict_answers(samples={"image": image, "text_input": question}, inference_method="generate")
# ['singapore']
Unified Feature Extraction Interface
LAVIS provides a unified interface to extract multimodal features from each architecture. To extract features, we load the feature extractor variants of each model. The multimodal feature can be used for multimodal classification. The low-dimensional unimodal features can be used to compute cross-modal similarity.
from lavis.models import load_model_and_preprocess
model, vis_processors, txt_processors = load_model_and_preprocess(name="blip_feature_extractor", model_type="base", is_eval=True, device=device)
caption = "a large fountain spewing water into the air"
image = vis_processors["eval"](raw_image).unsqueeze(0).to(device)
text_input = txt_processors["eval"](caption)
sample = {"image": image, "text_input": [text_input]}
features_multimodal = model.extract_features(sample)
print(features_multimodal.keys())
# odict_keys(['image_embeds', 'multimodal_embeds'])
print(features_multimodal.multimodal_embeds.shape)
# torch.Size([1, 12, 768]), use features_multimodal[:, 0, :] for multimodal classification tasks
features_image = model.extract_features(sample, mode="image")
print(features_image.keys())
# odict_keys(['image_embeds', 'image_embeds_proj'])
print(features_image.image_embeds.shape)
# torch.Size([1, 197, 768])
print(features_image.image_embeds_proj.shape)
# torch.Size([1, 197, 256])
features_text = model.extract_features(sample, mode="text")
print(features_text.keys())
# odict_keys(['text_embeds', 'text_embeds_proj'])
print(features_text.text_embeds.shape)
# torch.Size([1, 12, 768])
print(features_text.text_embeds_proj.shape)
# torch.Size([1, 12, 256])
similarity = features_image.image_embeds_proj[:, 0, :] @ features_text.text_embeds_proj[:, 0, :].t()
print(similarity)
# tensor([[0.2622]])
Since LAVIS supports a unified feature extraction interface, minimal changes are necessary to use a different model as feature extractor. For example, to use ALBEF as the feature extractor, one only needs to change the following line:
model, vis_processors, txt_processors = load_model_and_preprocess(name="albef_feature_extractor", model_type="base", is_eval=True, device=device)
Similarly, to use CLIP as feature extractor:
model, vis_processors, txt_processors = load_model_and_preprocess(name="clip_feature_extractor", model_type="base", is_eval=True, device=device)
# model, vis_processors, txt_processors = load_model_and_preprocess(name="clip_feature_extractor", model_type="RN50", is_eval=True, device=device)
# model, vis_processors, txt_processors = load_model_and_preprocess(name="clip_feature_extractor", model_type="ViT-L-14", is_eval=True, device=device)