.. role:: file (code) :language: shell :class: highlight .. image:: _static/logai_logo.jpg :width: 650 :align: center Tutorial: Log Anomaly Detection Using LogAI ========================================================= This is an example to show how to use LogAI to conduct log anomaly detection analysis. Load Data ---------------------------------------------- You can use :file:`OpensetDataLoader` to load a sample open log dataset. Here we use HealthApp dataset from `LogHub <https://zenodo.org/record/3227177#.Y1M3LezML0o>`_ as an example. .. code-block:: python import os from logai.dataloader.openset_data_loader import OpenSetDataLoader, OpenSetDataLoaderConfig #File Configuration filepath = os.path.join("..", "datasets", "HealthApp_2000.log") # Point to the target HealthApp.log dataset dataset_name = "HealthApp" data_loader = OpenSetDataLoader( OpenSetDataLoaderConfig( dataset_name=dataset_name, filepath=filepath) ) logrecord = data_loader.load_data() logrecord.to_dataframe().head(5) Preprocess --------------------------------------------------------- In preprocessing step user can retrieve and replace any regex strings and clean the raw loglines. This can be very useful to improve information extraction of the unstructured part of logs, as well as generate more structured attributes with domain knowledge. Here in the example, we use the below regex to retrieve IP addresses. .. code-block:: python from logai.preprocess.preprocessor import PreprocessorConfig, Preprocessor from logai.utils import constants loglines = logrecord.body[constants.LOGLINE_NAME] attributes = logrecord.attributes preprocessor_config = PreprocessorConfig( custom_replace_list=[ [r"\d+\.\d+\.\d+\.\d+", "<IP>"], # retrieve all IP addresses and replace with <IP> tag in the original string. ] ) preprocessor = Preprocessor(preprocessor_config) clean_logs, custom_patterns = preprocessor.clean_log( loglines ) Parsing --------------------------------------------------------------- After preprocessing, we call auto-parsing algorithms to automatically parse the cleaned logs. .. code-block:: python from logai.information_extraction.log_parser import LogParser, LogParserConfig from logai.algorithms.parsing_algo.drain import DrainParams # parsing parsing_algo_params = DrainParams( sim_th=0.5, depth=5 ) log_parser_config = LogParserConfig( parsing_algorithm="drain", parsing_algo_params=parsing_algo_params ) parser = LogParser(log_parser_config) parsed_result = parser.parse(clean_logs) parsed_loglines = parsed_result['parsed_logline'] Time-series Anomaly Detection --------------------------------------------------------------- Here we show an example to conduct time-series anomaly detection with parsed logs. Feature Extraction ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ After parsing the logs and get log templates, we can extract time-series features by converting these parsed loglines into counter vectors. .. code-block:: python from logai.information_extraction.feature_extractor import FeatureExtractorConfig, FeatureExtractor config = FeatureExtractorConfig( group_by_time="15min", group_by_category=['parsed_logline', 'Action', 'ID'], ) feature_extractor = FeatureExtractor(config) timestamps = logrecord.timestamp['timestamp'] parsed_loglines = parsed_result['parsed_logline'] counter_vector = feature_extractor.convert_to_counter_vector( log_pattern=parsed_loglines, attributes=attributes, timestamps=timestamps ) counter_vector.head(5) Anomaly Detection ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ With the generated :file:`counter_vcetor`, you can use :file:`AnomalyDetector` to detect timeseries anomalies. Here we use :file:`ETS` algorithm integrated in Merlion. .. code-block:: python from logai.analysis.anomaly_detector import AnomalyDetector, AnomalyDetectionConfig from sklearn.model_selection import train_test_split import pandas as pd counter_vector["attribute"] = counter_vector.drop( [ constants.LOG_COUNTS, constants.LOG_TIMESTAMPS, constants.EVENT_INDEX ], axis=1 ).apply( lambda x: "-".join(x.astype(str)), axis=1 ) attr_list = counter_vector["attribute"].unique() anomaly_detection_config = AnomalyDetectionConfig( algo_name='dbl' ) res = pd.DataFrame() for attr in attr_list: temp_df = counter_vector[counter_vector["attribute"] == attr] if temp_df.shape[0] >= constants.MIN_TS_LENGTH: train, test = train_test_split( temp_df[[constants.LOG_TIMESTAMPS, constants.LOG_COUNTS]], shuffle=False, train_size=0.3 ) anomaly_detector = AnomalyDetector(anomaly_detection_config) anomaly_detector.fit(train) anom_score = anomaly_detector.predict(test) res = res.append(anom_score) Then you chan check detected anomalou datapoints: .. code-block:: python # Get anomalous datapoints anomalies = counter_vector.iloc[res[res>0].index] anomalies.head(5) Semantic Anomaly Detection --------------------------------------------------------------- We can also use the log template for semantic based anomaly detection. In this approach, we retrieve the semantic features from the logs. This includes two parts: vectorizing the unstructured log templates and encoding the structured log attributes. Vectorization for unstructured loglines ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here we use `word2vec` to vectorize unstructured part of the logs. The output will be a list of numeric vectors that representing the semantic features of these log templates. .. code-block:: python from logai.information_extraction.log_vectorizer import VectorizerConfig, LogVectorizer vectorizer_config = VectorizerConfig( algo_name = "word2vec" ) vectorizer = LogVectorizer( vectorizer_config ) # Train vectorizer vectorizer.fit(parsed_loglines) # Transform the loglines into features log_vectors = vectorizer.transform(parsed_loglines) Categorical Encoding for log attributes ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We also do categorical encoding for log attributes to convert the strings into numerical representations. .. code-block:: python from logai.information_extraction.categorical_encoder import CategoricalEncoderConfig, CategoricalEncoder encoder_config = CategoricalEncoderConfig(name="label_encoder") encoder = CategoricalEncoder(encoder_config) attributes_encoded = encoder.fit_transform(attributes) Feature Extraction ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Then we extract and concate the semantic features for both the unstructured and structured part of logs. .. code-block:: python from logai.information_extraction.feature_extractor import FeatureExtractorConfig, FeatureExtractor timestamps = logrecord.timestamp['timestamp'] config = FeatureExtractorConfig( max_feature_len=100 ) feature_extractor = FeatureExtractor(config) _, feature_vector = feature_extractor.convert_to_feature_vector(log_vectors, attributes_encoded, timestamps) Anomaly Detection ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ With the extracted log semantic feature set, we can perform anomaly detection to find the abnormal logs. Here we use `isolation_forest` as an example. .. code-block:: python from sklearn.model_selection import train_test_split train, test = train_test_split(feature_vector, train_size=0.7, test_size=0.3) from logai.algorithms.anomaly_detection_algo.isolation_forest import IsolationForestParams from logai.analysis.anomaly_detector import AnomalyDetectionConfig, AnomalyDetector algo_params = IsolationForestParams( n_estimators=10, max_features=100 ) config = AnomalyDetectionConfig( algo_name='isolation_forest', algo_params=algo_params ) anomaly_detector = AnomalyDetector(config) anomaly_detector.fit(train) res = anomaly_detector.predict(test) # obtain the anomalous datapoints anomalies = res[res==1] Check the corresponding loglines ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python loglines.iloc[anomalies.index].head(5) Check the corresponding attributes ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python attributes.iloc[anomalies.index].head(5) To run this example, you can check the `jupyter notebook <https://github.com/salesforce/logai/blob/main/examples/jupyter_notebook/tutorial_log_anomaly_detection.ipynb>`_ example on Github.