pyrca.graphs.causal package
- class pyrca.graphs.causal.PC(config)
Bases:
CausalModel
The standard PC algorithm.
- class pyrca.graphs.causal.PCConfig(domain_knowledge_file=None, run_pdag2dag=True, max_num_points=5000000, alpha=0.01)
Bases:
CausalModelConfig
The configuration class for the PC algorithm.
- Parameters
domain_knowledge_file (
Optional
[str
]) – The file path of the domain knowledge file.run_pdag2dag (
bool
) – Whether to convert a partial DAG to a DAG.max_num_points (
int
) – The maximum number of data points in causal discovery.alpha (
float
) – The p-value threshold for independent test.
- domain_knowledge_file: str = None
- run_pdag2dag: bool = True
- max_num_points: int = 5000000
- alpha: float = 0.01
- class pyrca.graphs.causal.GES(config)
Bases:
CausalModel
The greedy equivalence search (GES) algorithm for causal discovery.
- class pyrca.graphs.causal.GESConfig(domain_knowledge_file=None, run_pdag2dag=True, max_num_points=5000000, max_degree=5, penalty_discount=100)
Bases:
CausalModelConfig
The configuration class for the GES algorithm.
- Parameters
domain_knowledge_file (
Optional
[str
]) – The file path of the domain knowledge file.run_pdag2dag (
bool
) – Whether to convert a partial DAG to a DAG.max_num_points (
int
) – The maximum number of data points in causal discovery.max_degree (
int
) – The allowed maximum number of parents when searching the graph.penalty_discount (
int
) – The penalty discount (a regularization parameter).
- domain_knowledge_file: str = None
- run_pdag2dag: bool = True
- max_num_points: int = 5000000
- max_degree: int = 5
- penalty_discount: int = 100
- class pyrca.graphs.causal.FGES(config)
Bases:
CausalModel
The fast greedy equivalence search (FGES) algorithm for causal discovery.
- config_class
alias of
FGESConfig
- causal = None
- static initialize()
- static finish()
- class pyrca.graphs.causal.FGESConfig(domain_knowledge_file=None, run_pdag2dag=True, max_num_points=5000000, max_degree=10, penalty_discount=80, score_id='sem_bic_score')
Bases:
CausalModelConfig
The configuration class for the FGES algorithm.
- Parameters
domain_knowledge_file (
Optional
[str
]) – The file path of the domain knowledge file.max_num_points (
int
) – The maximum number of data points in causal discovery.max_degree (
int
) – The allowed maximum number of parents when searching the graph.penalty_discount (
int
) – The penalty discount (a regularization parameter).score_id (
str
) – The score function name, e.g., “sem_bic_score”.
- domain_knowledge_file: str = None
- max_num_points: int = 5000000
- max_degree: int = 10
- penalty_discount: int = 80
- score_id: str = 'sem_bic_score'
- class pyrca.graphs.causal.LiNGAM(config)
Bases:
CausalModel
The non-gaussian linear causal models (LiNGAM): https://github.com/cdt15/lingam.
- config_class
alias of
LiNGAMConfig
- class pyrca.graphs.causal.LiNGAMConfig(domain_knowledge_file=None, run_pdag2dag=True, max_num_points=5000000, lower_limit=0.1, n_sampling=-1, min_causal_effect=0.01)
Bases:
CausalModelConfig
The configuration class for the LiNGAM algorithm.
- Parameters
domain_knowledge_file (
Optional
[str
]) – The file path of the domain knowledge file.run_pdag2dag (
bool
) – Whether to convert a partial DAG to a DAG.max_num_points (
int
) – The maximum number of data points in causal discovery.lower_limit (
float
) – The lower limit of the causal effect scores for constructing causal graphs.n_sampling (
int
) – The number of bootstrapping samples (for bootstrapping only). Ifn_sampling
> 0, bootstrapping will be applied.min_causal_effect (
float
) – The threshold for detecting causal direction (for bootstrapping only).
- domain_knowledge_file: str = None
- run_pdag2dag: bool = True
- max_num_points: int = 5000000
- lower_limit: float = 0.1
- n_sampling: int = -1
- min_causal_effect: float = 0.01