warp_drive.managers package¶
Submodules¶
warp_drive.managers.data_manager module¶
- class warp_drive.managers.data_manager.CUDADataManager(num_agents: Optional[int] = None, num_envs: Optional[int] = None, blocks_per_env: int = 1, episode_length: Optional[int] = None)¶
Bases:
object
Base CUDA Data Manager: manages the data initialization of GPU, and data transfer between CPU host and GPU device
- add_meta_info(meta: Dict)¶
Add meta information to the data manager, only accepts scalar integer or float
- Parameters
meta – for example, {“episode_length”: 100, “num_agents”: 10}
Add shared constants to the data manager
- Parameters
constants – e.g., {“action_mapping”: [[0,0], [1,1], [-1,-1]]}
- data_on_device_via_torch(name: str) torch.Tensor ¶
The data on the device. This is used for Pytorch default access within GPU. To fetch the tensor back to the host, call pull_data_from_device()
- Parameters
name – name of the device array
returns: the tensor itself at the device.
- device_data(name: str)¶
- Parameters
name – name of the device data
returns: the data pointer in the device for CUDA to access
- get_dtype(name: str)¶
- get_shape(name: str)¶
- property host_data¶
- is_data_on_device(name: str) bool ¶
- is_data_on_device_via_torch(name: str) bool ¶
This is used to check if the data exist and accessible via Pytorch default access within GPU. name: name of the device
- property log_data_list¶
- meta_info(name: str)¶
- pull_data_from_device(name: str)¶
Fetch the values of device array back to the host
- Parameters
name – name of the device array
returns: a host copy of scalar data or numpy array fetched back from the device array
- push_data_to_device(data: Dict, torch_accessible: bool = False)¶
Register data to the host, and push to the device (1) register at self._host_data (2) push to device and register at self._device_data_pointer, CUDA program can directly access those data via pointer (3) if save_copy_and_apply_at_reset or log_data_across_episode as instructed by the data, register and push to device using step (1)(2) too
- Parameters
data – e.g., {“name”: {“data”: numpy array,
“attributes”: {“save_copy_and_apply_at_reset”: True, “log_data_across_episode”: True}}}. This data dictionary can be constructed by warp_drive.utils.data_feed.DataFeed :param torch_accessible: if True, the data is directly accessible by Pytorch
- property reset_data_list¶
- reset_device(name: Optional[str] = None)¶
Reset the device array values back to the host array values Note: this reset is not a device-only execution, but incurs data transfer from host to device
- Parameters
name – (optional) reset a device array by name, if None, reset all arrays
- property scalar_data_list¶
warp_drive.managers.function_manager module¶
- class warp_drive.managers.function_manager.CUDAEnvironmentReset(function_manager: warp_drive.managers.function_manager.CUDAFunctionManager)¶
Bases:
object
Base CUDA Environment Reset: Manages the env reset when the game is terminated inside GPU. With this, the GPU can automatically reset and restart example_envs by itself.
prerequisite: CUDAFunctionManager is initialized, and the default function list has been successfully launched
Example
Please refer to tutorials
- custom_reset(args: Optional[list] = None, block=None, grid=None)¶
- register_custom_reset_function(data_manager: warp_drive.managers.data_manager.CUDADataManager, reset_function_name=None)¶
- reset_when_done(data_manager: warp_drive.managers.data_manager.CUDADataManager, mode: str = 'if_done', undo_done_after_reset: bool = True, use_random_reset: bool = False)¶
- reset_when_done_deterministic(data_manager: warp_drive.managers.data_manager.CUDADataManager, mode: str = 'if_done', undo_done_after_reset: bool = True)¶
- class warp_drive.managers.function_manager.CUDAFunctionFeed(data_manager: warp_drive.managers.data_manager.CUDADataManager)¶
Bases:
object
CUDAFunctionFeed as the intermediate layer to feed data arguments into the CUDA function. Please make sure that the order of data aligns with the CUDA function signature.
- class warp_drive.managers.function_manager.CUDAFunctionManager(num_agents: int = 1, num_envs: int = 1, blocks_per_env: int = 1, process_id: int = 0)¶
Bases:
object
Base CUDA Function Manager: manages the CUDA module and the kernel functions defined therein
- property block¶
- property blocks_per_env¶
- property get_function¶
- property grid¶
- initialize_default_functions()¶
- initialize_functions(func_names: Optional[list] = None)¶
- class warp_drive.managers.function_manager.CUDALogController(function_manager: warp_drive.managers.function_manager.CUDAFunctionManager)¶
Bases:
object
Base CUDA Log Controller: manages the CUDA logger inside GPU for all the data having the flag log_data_across_episode = True. The log function will only work for one particular env, even there are multiple example_envs running together.
prerequisite: CUDAFunctionManager is initialized, and the default function list has been successfully launched
Example
Please refer to tutorials
- fetch_log(data_manager: warp_drive.managers.data_manager.CUDADataManager, names: Optional[str] = None, last_step: Optional[int] = None, check_last_valid_step: bool = True)¶
Fetch the complete log back to the host.
- Parameters
data_manager – CUDADataManager object
names – names of the data
last_step – optional, if provided, return data till min(last_step, )
check_last_valid_step – if True, check if host and device are consistent
with the last_valid_step
returns: the log at the host
- reset_log(data_manager: warp_drive.managers.data_manager.CUDADataManager, env_id: int = 0)¶
Reset the dense log mask back to [1, 0, 0, 0 ….]
- Parameters
data_manager – CUDADataManager object
env_id – the env with env_id will reset log and later update_log()
will be executed for this env.
- update_log(data_manager: warp_drive.managers.data_manager.CUDADataManager, step: int)¶
Update the log for all the data having the flag log_data_across_episode = True
- Parameters
data_manager – CUDADataManager object
step – the logging step
- class warp_drive.managers.function_manager.CUDASampler(function_manager: warp_drive.managers.function_manager.CUDAFunctionManager)¶
Bases:
object
Base CUDA Sampler: controls probability sampling inside GPU. A fast and lightweight implementation compared to the functionality provided by torch.Categorical.sample() It accepts the Pytorch tensor as distribution and gives out the sampled action index
prerequisite: CUDAFunctionManager is initialized, and the default function list has been successfully launched
Example
Please refer to tutorials
- init_random(seed: Optional[int] = None)¶
- register_actions(data_manager: warp_drive.managers.data_manager.CUDADataManager, action_name: str, num_actions: int)¶
Register an action :param data_manager: CUDADataManager object :param action_name: the name of action array that will record the sampled actions :param num_actions: the number of actions for this action_name (the last dimension of the action distribution)
- sample(data_manager: warp_drive.managers.data_manager.CUDADataManager, distribution: torch.Tensor, action_name: str)¶